Computational study of the thermal rearrangement of acetoxy(methoxy)carbene

Wojciech Czardybon, John Warkentin* and Nick Henry Werstiuk*

Department of Chemistry, McMaster University, Hamilton, Ontario, Canada L8S 4M1

Received 23 September 2004; revised 22 November 2004; accepted 26 November 2004

ABSTRACT: Thermolysis of 2-acetoxy-2-methoxy-5,5-dimethyl- Δ^3 -1,3,4-oxadiazoline affords acetoxy(methoxy)-carbene. Thermal rearrangement of acetoxy(methoxy)carbene to methyl pyruvate is a concerted 1,2-migration, avoiding a potential radical-pair mechanism. Copyright © 2005 John Wiley & Sons, Ltd. Supplementary electronic material for this paper is available in Wiley Interscience at http://www.interscience.wiley.com/jpages/0894-3230/suppmat/

KEYWORDS: acetoxy(methoxy)carbene; carbene; concerted; computation; rearrangement

INTRODUCTION

Recently, we reported that 2-acetoxy-2-methoxy-5,5dimethyl- Δ^3 -1,3,4-oxadiazoline (1) (also known as 2acetoxy-2,5-dihydro-2-methoxy-5,5-dimethyl-1,3,4-oxadiazole) undergoes two competing cycloreversions upon thermolysis in benzene at 110 °C. The cycloreversions were essentially balanced, affording 2-diazopropane (2) together with the acetic methylcarbonic anhydride 3 on the one hand, and N₂ and the carbonyl ylide 4 on the other, as shown in Scheme 1. That scheme was supported with computation of the energetics of the possible cycloreversions (W. Czardybon, J. Warkentin and N. H. Werstiuk, in preparation). The ylide was assumed to be the initial product of the extrusion of N₂; the actual materials identified were acetone and methyl pyruvate (6), the latter from rearrangement of acetoxy(methoxy)carbene (5), presumably formed by fragmentation of ylide 4. The carbene was also inferred from thermolysis in the presence of benzylidenemalononitrile, which gave methyl ester 7 through a sequence of reactions outlined in Scheme 2.1

We now report computations concerning the conformational properties of carbene **5** and the mechanism of its rearrangement to methyl pyruvate (**6**). The pyruvate could arise by concerted rearrangement of **5**, or its genesis could involve the radical pair **8** (Scheme 3). The experimental results indicated the concerted pathway, for which there is precedent in the rearrangement of 1-acetoxyalkylidenes.^{2–4} However, the radical pair mechanism is also known for the cases of several dioxycarbenes^{5–7} and it was of interest to estimate the barrier for

*Correspondence to: J. Warkentin and N. H. Werstiuk, Department of Chemistry, McMaster University, Hamilton, Ontario, Canada L8S 4M1. E-mail: warkent@mcmaster.ca; werstiuk@mcmaster.ca Contract/grant sponsors: Natural Sciences and Engineering Research Council of Canada.

radical-pair formation from **5**, even though there was no direct experimental evidence for this reaction, and to compute the barriers for other potential fates of the carbene.

EXPERIMENTAL AND RESULTS

Optimized equilibrium geometries (the carbenes were not constrained to be C_s planar) and transition states were obtained at the B3PW91/6–31+G(d,p) level, which includes the three-parameter exchange functional of Becke and the gradient-corrected correlation functional of

Scheme 1

Scheme 2

Scheme 3

Figure 1. Definition of dihedral angles α , β and γ for acetoxy(methoxy)carbene

Perdew and Wang,⁸ using either Gaussian 98^9 or Gaussian $03.^{10}$ Uncorrected total energies and Z-matrices for all optimized geometries and transitions states are included as Supplementary Information (available at Wiley Interscience). The ZPE-corrected energy and the enthalpy (at 298.15 K) of carbene $\mathbf{5_{W1}}$ are also included. Calculations on the dissociation of $\mathbf{5}$ to radicals were

carried out at the UB3PW91/6–31+G(d,p) level. Frequency calculations were performed for all structures to characterize optimized geometries and transition states. Where necessary, uncorrected total energies, zero-point corrected energies and enthalpies at 298.15 K are presented. An IRC calculation was run for the rearrangement of carbene $\mathbf{5_{W1}}$ to methyl pyruvate (6).

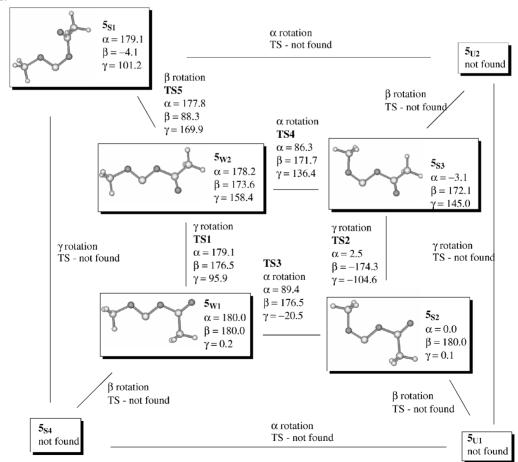
Conformational analysis of acetoxy(methoxy)carbene (5)

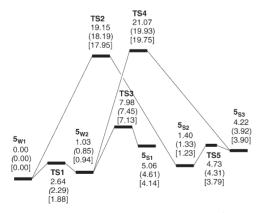
To analyze possible reactions of carbene **5**, it was desirable to establish its conformational properties because the

Table 1. Selected geometric parameters of conformers of 5 optimized at the B3PW91/6-31+G(d,p) level

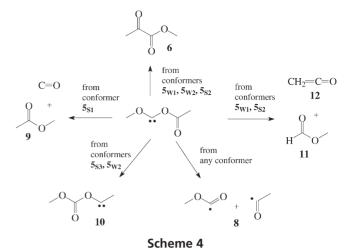
Conformer of 5	Planar structure (°)			Dihedral angles found (°)			
	α	β	γ	α	β	γ	Energy relative to $\mathbf{5_{W1}}$ (kcal mol ⁻¹) ^a
$5_{ m W1}$	180	180	0	180	180	0.2	0.00
5_{W2}	180	180	180	178.2	173.6	158.4	1.03
5_{S1}	180	0	180	179.1	-4.1	101.2	5.06
5_{S2}	0	180	0	0	180	0.1	1.40
5_{S3}	0	180	180	-3.1	172.1	145.0	4.22
5 _{S4}	180	0	0		Not found		
5 _{U1}	0	0	0		Not found		
5 _{U2}	0	0	180		Not found		_

 $a \ 1 \ kcal = 4.184 \ kJ.$




Figure 2. Conformers of 5 and transition states for their interconversion at the B3PW91/6–31+G(d,p) level

rearrangement and fragmentation of **5** might exhibit conformational dependences. It was necessary to take into consideration rotation around three bonds described by dihedral angles α , β and γ (Fig. 1). Conformers resulting from rotation of the methyl groups were omitted. The conformers found can be divided into two groups with respect to values of α and β that describe the geometry around the carbene carbon. The first group contains W-like conformers ($\alpha \approx \beta \approx 180^\circ$) and the second group contains sickle-like (S) conformations ($\alpha \approx 180^\circ$, $\beta \approx 0^\circ$ or $\alpha \approx 0^\circ$, $\beta \approx 180^\circ$) (Table 1). Table 1 lists all conformers that were found from combinations of α , β and γ values set initially to 0 or 180° . Stable U-shaped conformations could not be located.


Values of α and β found for $\mathbf{5_{W1}}$, $\mathbf{5_{W2}}$, $\mathbf{5_{S1}}$, $\mathbf{5_{S2}}$ and $\mathbf{5_{S3}}$ are close to the values for the planar conformations (0° or 180°), varying from 0° to 4.1° and from 172.1° to 180.0°. Deviations observed for γ are significantly greater. Changes in that angle correspond to rotation around the O—C(O) (γ) single bond and have a minor influence on the energy of $\mathbf{5}$, as will be shown below.

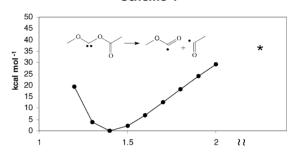

Figure 2 shows the angles of optimized conformations of 5 that were found, together with transition states (TSs) connecting them. The three missing conformers ($\mathbf{5_{S4}}$, $\mathbf{5_{U1}}$, $\mathbf{5_{U2}}$) are significantly more crowded than the others and the steric hindrance accounts for the fact that they are not stable structures. Optimization of those three structures, starting from ideally planar conformers, led to the more stable conformations $\mathbf{5_{S1}}$, $\mathbf{5_{S2}}$, and $\mathbf{5_{S3}}$, respectively.

Figure 3 shows the potential energy surfaces for all stable conformers of **5** that were found, including the transition states connecting them. It is seen that the uncorrected energies, ZPE corrected energies or enthalpies yield potential energy surfaces that differ only marginally from each other. The average barriers for rotation around dihedral angles α and β are in the regions of 20 and 8.0 kcal mol⁻¹, respectively. As can be seen in Fig. 3, both barriers for rotation γ are very small (2.6 and 4.7 kcal mol⁻¹). Detailed examination of this rotation for

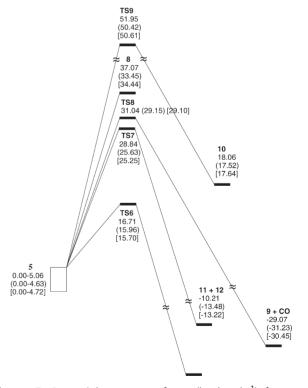
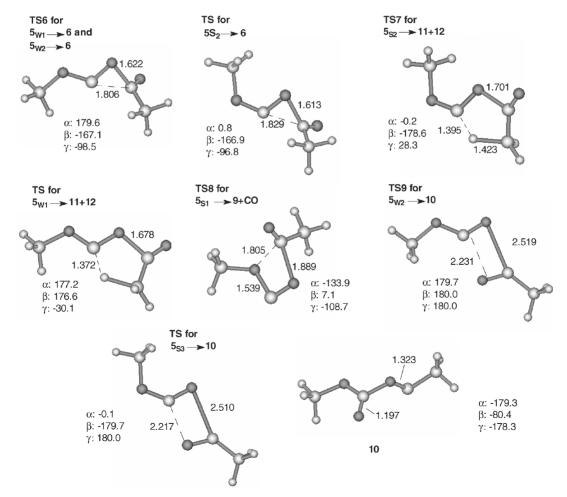


Figure 3. Potential energy surfaces ($kcal \, mol^{-1}$) for all conformers of **5**, including transition states at the B3PW91/6–31+G(d,p) level. The zero-point corrected total energies are shown in parentheses and enthalpies (at 298.15 K) in square brackets

Figure 4. Plot of energy versus distance (Å) between the C and O atoms at the UB3PW91/6–31+G(d,p) level

Figure 5. Potential energy surfaces (kcal mol⁻¹) for rearrangement and fragmentation of **5** at the B3PW91/6–31+G(d,p) level and, where necessary, at the UB3PW91/6–31+G(d,p) level. The values in parentheses are zero-point corrected total energies and the enthalpies (at 298.15 K) are shown in square brackets. When a product can be formed from more than one conformer, only the lowest barrier is shown

conformer $\mathbf{5_{S1}}$ led to at least two more stable structures and transition states connecting them with other conformers. Differences in energy between these structures (and also transition states for their interconversions) and $\mathbf{5_{S1}}$ are very small ($< 1 \text{ kcal mol}^{-1}$), and therefore they were not taken into consideration. Rotation around the O—C(O) (γ) single bond in 5 has a very minor influence on energy and the corresponding potential energy surface is almost flat.


Rearrangements and fragmentations of 5

The conformational preferences for several reactions of 5 that were examined are summarized in Scheme 4. Although we cannot tell which conformer is the starting point for a specific product, because some conformers are undoubtedly equilibrated, the barrier for any step of a multistep process can be calculated. Conformers $\mathbf{5_{W1}}$, $\mathbf{5_{W2}}$ and $\mathbf{5_{S2}}$ can undergo a [1,2]-acyl shift, yielding methyl pyruvate (6) with barriers near 17 kcal mol⁻¹. Conformers $\mathbf{5_{W1}}$ and $\mathbf{5_{S2}}$ could also fragment to methyl formate (11) and ketene (12), which might be formed through a hydrogen shift concerted with breaking of the C—O

bond. The barrier for that reaction lies between about 29 (28.84 calculated) and 30 (30.18 calculated) kcal mol⁻¹.

Conformer $\mathbf{5_{S1}}$ might also fragment through concerted breaking of two C—O bonds to form carbon monoxide and methyl acetate (9). The barrier for this reaction is about $31 \, \text{kcal mol}^{-1}$. Conformers $\mathbf{5_{S3}}$ and $\mathbf{5_{W2}}$ might rearrange through an oxygen shift to form carbene (10) with barriers near $52 \, \text{kcal mol}^{-1}$.

The fragmentation of 5 to acetyl and methoxycarbonyl radicals (8) was also examined. The transition state for that reaction could not be located. Figure 4 shows a plot of energy versus C—C bond length for 5_{w_1} . Stretching the C—O bond causes the energy of the system to rise but a maximum related to a transition state was not located. The sum of the energies of the free radicals, arbitrarily located along the distance axis, is indicated with an asterisk. The energetic cost of radical-pair formation was estimated as the difference between the sum of the total energies of the free radicals and the total energy of 5. While the energy of the radical-pair remains constant, the cost of its formation varies between 32 and 37 kcal mol⁻¹, depending on the carbene conformer used. The relative energies of all stable carbene conformers studied lie in a range of about 5 kcal mol⁻¹.

Figure 6. Geometries of transition states for rearrangements and fragmentations of **5** (Scheme 4) and the optimized geometry of carbene **10** at the B3PW91/6–31+G(d,p) and, where necessary, UB3PW91/6–31+G(d,p) levels

Figure 5 shows potential energy surfaces for rearrangements and fragmentations of **5**. The conformers of **5** shown previously are not differentiated in energy, but are represented as a box for clarity. The preferred reaction of **5** is predicted to be concerted rearrangement to methyl pyruvate, with a barrier near 17 kcal mol⁻¹ for different conformers. This result and the fact that the fragmentations to radicals have barriers that range from 32 to 37 kcal mol⁻¹ are nicely in accord with our experimental study showing that **5** does rearrange to methyl pyruvate (**6**) without the intermediacy of radicals. Additionally, an IRC calculation clearly established that **TS6** connects **5** with methyl puruvate (**6**).

Figure 6 shows selected geometric parameters of transition states for reactions and rearrangements of 5 and the optimized geometry of 10.

CONCLUSIONS

A computational study of the chemistry of acetoxy (methoxy)carbene indicates that it rearranges to methyl pyruvate via a concerted, 1,2-acyl group migration rather than fragmentation to a radical-pair and coupling of the latter. Other potential fates of the carbene involve higher barriers. Our work indicates calculations at the B3PW91/6–31+G(d,p) level are suitable for studying reactions of heteratom-substituted carbenes.

Acknowledgements

We gratefully acknowledge financial support by the Natural Sciences and Engineering Research Council of Canada. We thank SHARCNET (Shared Hierarchical Academic Research Computing Network) (of Ontario) for providing computing resources at McMaster University and the University of Western Ontario.

REFERENCES

- Czardybon W, Klys A, Warkentin J, Werstiuk NH. Can. J. Chem. 2003; 81: 1438.
- Brown RFC, Eastwood FW, Lim ST, McMullen GL. Aust. J. Chem. 1976; 29: 1705.
- 3. Moss RA, Xue S, Ma W, Ma H. Tetrahedron Lett. 1997; 38: 4379.
- 4. Moss RA, Merrer DC. Tetrahedron Lett. 1998; 39: 8067.
- 5. Merkley N, Warkentin J. Can. J. Chem. 2002; **80**: 1187.
- 6. Venneri PC, Warkentin J. J. Am. Chem. Soc. 1998; 120: 11182.
- (a) Merkley N, El-Saidi M, Warkentin J. Can. J. Chem. 2000; 78: 356; (b) Merkley N, Warkentin J. Can. J. Chem. 2000; 78: 942.
- 8. Perdew JP, Wang Y. Phys. Rev. B 1992; 45: 13244.
- Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, M. Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA. Gaussian 98. Gaussian: Pittsburgh, PA, 1998.
- Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03. Gaussian: Pittsburgh, PA, 2003.